Author:
Xiang Jin-Feng,Wang Wen-Quan,Liu Liang,Xu Hua-Xiang,Wu Chun-Tao,Yang Jing-Xuan,Qi Zi-Hao,Wang Ya-Qi,Xu Jin,Liu Chen,Long Jiang,Ni Quan-Xing,Li Min,Yu Xian-Jun
Abstract
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) and preoperative CA19-9 ≥ 1,000 U/mL that does not decrease postresection have the worst prognosis, but the mechanism is unclear. Here, we elucidated the relationship between this signature and driver-gene mutations and the cavins/caveolin-1 axis. Four major driver-genes (KRAS, TP53, CDKN2A/p16, and SMAD4/DPC4) that are associated with PDAC and five critical molecules (cavin-1/-2/-3/-4 and caveolin-1) in the cavins/caveolin-1 axis were screened by immunohistochemistry in tumor tissue microarrays. Additionally, six pancreatic cancer cell lines and a spleen subcapsular inoculation nude mouse model were also used. Overexpression of mutant p53 was the major mutational event in patients with the CA19-9 signature. Cavin-1 was also overexpressed and mutant p53 correlated directly with high cavin-1 expression in pancreatic cancer cell lines and tumor specimens (P < 0.01). Furthermore, mutant p53R172H upregulated cavin-1 and promoted invasiveness and metastasis of pancreatic cancer cells in vitro and in vivo. Finally, combination of mutant p53 and high cavin-1 density indicated the shortest survival for patients with PDAC after resection (P < 0.001). Mutant p53-driven upregulation of cavin-1 represents the major mechanism of poor outcome for PDAC patients with the CA19-9 signature after resection, indicating that inhibition of cavin-1 may improve the long-term efficacy of pancreatectomy.
Publisher
Springer Science and Business Media LLC
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献