Fractal photonic anomalous Floquet topological insulators to generate multiple quantum chiral edge states

Author:

Li MengORCID,Li Chu,Yan Linyu,Li Qiang,Gong Qihuang,Li YanORCID

Abstract

AbstractAnomalous Floquet topological insulators with vanishing Chern numbers but supporting chiral edge modes are attracting more and more attention. Since the existing anomalous Floquet topological insulators usually support only one kind of chiral edge mode even at a large lattice size, they are unscalable and unapplicable for multistate topological quantum systems. Recently, fractal topological insulators with self-similarity have been explored to support more nontrivial modes. Here, we demonstrate the first experimental realization of fractal photonic anomalous Floquet topological insulators based on dual Sierpinski carpet consisting of directional couplers using the femtosecond laser direct writing. The fabricated lattices support much more kinds of chiral edge states with fewer waveguides and enable perfect hopping of quantum states with near unit transfer efficiency. Instead of zero-dimensional bound modes for quantum state transport in previous laser direct-written topological insulators, we generate multiple propagating single-photon chiral edge states in the fractal lattice and observe high-visibility quantum interferences. These suggest the successful realization of highly indistinguishable single-photon chiral edge states, which can be applied in various quantum operations. This work provides the potential for enhancing the multi-fold manipulation of quantum states, enlarging the encodable quantum information capacity in a single lattice via high-dimensional encoding and many other fractal applications.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3