Super-resolution vibrational microscopy by stimulated Raman excited fluorescence

Author:

Xiong HanqingORCID,Qian NaixinORCID,Miao YupengORCID,Zhao Zhilun,Chen Chen,Min WeiORCID

Abstract

AbstractInspired by the revolutionary impact of super-resolution fluorescence microscopy, super-resolution Raman imaging has been long pursued because of its much higher chemical specificity than the fluorescence counterpart. However, vibrational contrasts are intrinsically less sensitive compared with fluorescence, resulting in only mild resolution enhancement beyond the diffraction limit even with strong laser excitation power. As such, it is still a great challenge to achieve biocompatible super-resolution vibrational imaging in the optical far-field. In 2019 Stimulated Raman Excited Fluorescence (SREF) was discovered as an ultrasensitive vibrational spectroscopy that combines the high chemical specificity of Raman scattering and the superb sensitivity of fluorescence detection. Herein we developed a novel super-resolution vibrational imaging method by harnessing SREF as the contrast mechanism. We first identified the undesired role of anti-Stokes fluorescence background in preventing direct adoption of super-resolution fluorescence technique. We then devised a frequency-modulation (FM) strategy to remove the broadband backgrounds and achieved high-contrast SREF imaging. Assisted by newly synthesized SREF dyes, we realized multicolor FM-SREF imaging with nanometer spectral resolution. Finally, by integrating stimulated emission depletion (STED) with background-free FM-SREF, we accomplished high-contrast super-resolution vibrational imaging with STED-FM-SREF whose spatial resolution is only determined by the signal-to-noise ratio. In our proof-of-principle demonstration, more than two times of resolution improvement is achieved in biological systems with moderate laser excitation power, which shall be further refined with optimized instrumentation and imaging probes. With its super resolution, high sensitivity, vibrational contrast, and mild laser excitation power, STED-FM-SREF microscopy is envisioned to aid a wide variety of applications.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3