Abstract
AbstractSilicon (Si) photonics has recently emerged as a key enabling technology in many application fields thanks to the mature Si process technology, the large silicon wafer size, and promising Si optical properties. The monolithic integration by direct epitaxy of III–V lasers and Si photonic devices on the same Si substrate has been considered for decades as the main obstacle to the realization of dense photonics chips. Despite considerable progress in the last decade, only discrete III–V lasers grown on bare Si wafers have been reported, whatever the wavelength and laser technology. Here we demonstrate the first semiconductor laser grown on a patterned Si photonics platform with light coupled into a waveguide. A mid-IR GaSb-based diode laser was directly grown on a pre-patterned Si photonics wafer equipped with SiN waveguides clad by SiO2. Growth and device fabrication challenges, arising from the template architecture, were overcome to demonstrate more than 10 mW outpower of emitted light in continuous wave operation at room temperature. In addition, around 10% of the light was coupled into the SiN waveguides, in good agreement with theoretical calculations for this butt-coupling configuration. This work lift an important building block and it paves the way for future low-cost, large-scale, fully integrated photonic chips.
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献