Unlocking the monolithic integration scenario: optical coupling between GaSb diode lasers epitaxially grown on patterned Si substrates and passive SiN waveguides

Author:

Remis AndresORCID,Monge-Bartolome LauraORCID,Paparella MicheleORCID,Gilbert AudreyORCID,Boissier Guilhem,Grande MarcoORCID,Blake AlanORCID,O’Faolain LiamORCID,Cerutti LaurentORCID,Rodriguez Jean-BaptisteORCID,Tournié EricORCID

Abstract

AbstractSilicon (Si) photonics has recently emerged as a key enabling technology in many application fields thanks to the mature Si process technology, the large silicon wafer size, and promising Si optical properties. The monolithic integration by direct epitaxy of III–V lasers and Si photonic devices on the same Si substrate has been considered for decades as the main obstacle to the realization of dense photonics chips. Despite considerable progress in the last decade, only discrete III–V lasers grown on bare Si wafers have been reported, whatever the wavelength and laser technology. Here we demonstrate the first semiconductor laser grown on a patterned Si photonics platform with light coupled into a waveguide. A mid-IR GaSb-based diode laser was directly grown on a pre-patterned Si photonics wafer equipped with SiN waveguides clad by SiO2. Growth and device fabrication challenges, arising from the template architecture, were overcome to demonstrate more than 10 mW outpower of emitted light in continuous wave operation at room temperature. In addition, around 10% of the light was coupled into the SiN waveguides, in good agreement with theoretical calculations for this butt-coupling configuration. This work lift an important building block and it paves the way for future low-cost, large-scale, fully integrated photonic chips.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3