Abstract
AbstractThe sun and outer space are two of the most important fundamental thermodynamic resources for renewable energy harvesting. A significant amount of work has focused on understanding the fundamental limit of energy harvesting from the sun. More recently, there have been several theoretical analyses of the fundamental limit of energy harvesting from outer space. However, far less is understood about the fundamental limits of simultaneous energy harvesting from both the sun and outer space. Here, we consider and introduce various schemes that are capable of simultaneous energy harvesting and elucidate the fundamental thermodynamic limits of these schemes. We show that the theoretical limits can far exceed the previously established limit associated with utilizing only one thermodynamic resource. Our results highlight the significant potential of simultaneous energy harvesting and indicate new fundamental opportunities for improving the efficiency of energy harvesting systems.
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献