Hydrothermal growth of KTiOPO4 crystal for electro-optical application

Author:

Zhou Haitao,He Xiaoling,Wu Wenyuan,Tong Jingfang,Wang Jinliang,Zuo Yanbin,Wu Yicheng,Zhang Changlong,Hu Zhanggui

Abstract

Abstract“New” electro-optical (EO) crystals are hard to find, “old” EO crystals are scarce and each has its own problems, and the demand for high-performance EO crystals by higher power, higher repetition rate, and narrower pulse width laser is realistic and urgent. The EO performance of KTP was recognized as soon as it was discovered, but after more than 40 years of development, the reports, and products of EO devices based on KTP are less than those of other EO crystals, even though KTP is now almost the cheapest nonlinear optical crystal material. In this paper, based on our understanding of the crystal structure of predecessors and ourselves, especially the understanding and practice of quasi-one-dimensional ionic conduction mechanism, we think that crystal growth is the most important reason that affects the controllability of crystal performance. Through a series of science and technology, we realize the growth of large-size crystals with high-optical uniformity, then reduce the absorption of KTP to a very low level, and grow crystals with resistance to electric damage and laser damage. On this basis, reducing the conductivity and improving the uniformity of optical, electrical, piezoelectric, and ferroelectric properties are emphasized. The extinction ratio, piezoelectric ringing effect, and thermal influence of the EO switch based on KTP crystal are tested, and some publicly available progress of using KTP EO devices in high-repetition rate laser is listed. Finally, we are looking forward to the development of KTP EO crystal for the laser system to EO generator for integrated optics.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3