Spin-orbit Rabi oscillations in optically synthesized magnetic fields

Author:

Liu Guohua,Zhang Xiliang,Zhang Xin,Hu Yanwen,Li Zhen,Chen Zhenqiang,Fu ShenheORCID

Abstract

AbstractRabi oscillation has been proven to be one of the cornerstones of quantum mechanics, triggering substantial investigations in different disciplines and various important applications both in the classical and quantum regimes. So far, two independent classes of wave states in the Rabi oscillations have been revealed as spin waves and orbital waves, while a Rabi wave state simultaneously merging the spin and orbital angular momentum has remained elusive. Here we report on the experimental and theoretical observation and control of spin–orbit-coupled Rabi oscillations in the higher-order regime of light. We constitute a pseudo spin-1/2 formalism and optically synthesize a magnetization vector through light-crystal interaction. We observe simultaneous oscillations of these ingredients in weak and strong coupling regimes, which are effectively controlled by a beam-dependent synthetic magnetic field. We introduce an electrically tunable platform, allowing fine control of transition between different oscillatory modes, resulting in an emission of orbital-angular-momentum beams with tunable topological structures. Our results constitute a general framework to explore spin–orbit couplings in the higher-order regime, offering routes to manipulating the spin and orbital angular momentum in three and four dimensions. The close analogy with the Pauli equation in quantum mechanics, nonlinear optics, etc., implies that the demonstrated concept can be readily generalized to different disciplines.

Funder

National Natural Science Foundation of China

Pearl River S and T Nova Program of Guangzhou

Guangzhou Science and Technology Program key projects

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3