Electrically-pumped compact topological bulk lasers driven by band-inverted bound states in the continuum

Author:

Han Song,Cui Jieyuan,Chua Yunda,Zeng Yongquan,Hu Liangxing,Dai Mingjin,Wang Fakun,Sun Fangyuan,Zhu Song,Li LianheORCID,Davies Alexander GilesORCID,Linfield Edmund HaroldORCID,Tan Chuan Seng,Kivshar YuriORCID,Wang Qi JieORCID

Abstract

AbstractOne of the most exciting breakthroughs in physics is the concept of topology that was recently introduced to photonics, achieving robust functionalities, as manifested in the recently demonstrated topological lasers. However, so far almost all attention was focused on lasing from topological edge states. Bulk bands that reflect the topological bulk-edge correspondence have been largely missed. Here, we demonstrate an electrically pumped topological bulk quantum cascade laser (QCL) operating in the terahertz (THz) frequency range. In addition to the band-inversion induced in-plane reflection due to topological nontrivial cavity surrounded by a trivial domain, we further illustrate the band edges of such topological bulk lasers are recognized as the bound states in the continuum (BICs) due to their nonradiative characteristics and robust topological polarization charges in the momentum space. Therefore, the lasing modes show both in-plane and out-of-plane tight confinements in a compact laser cavity (lateral size ~3λlaser). Experimentally, we realize a miniaturized THz QCL that shows single-mode lasing with a side-mode suppression ratio (SMSR) around 20 dB. We also observe a cylindrical vector beam for the far-field emission, which is evidence for topological bulk BIC lasers. Our demonstration on miniaturization of single-mode beam-engineered THz lasers is promising for many applications including imaging, sensing, and communications.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3