Laser manufacturing of spatial resolution approaching quantum limit

Author:

Wang Xiao-Jie,Fang Hong-Hua,Li Zhen-Ze,Wang Dan,Sun Hong-BoORCID

Abstract

AbstractAtomic and close-to-atom scale manufacturing is a promising avenue toward single-photon emitters, single-electron transistors, single-atom memory, and quantum-bit devices for future communication, computation, and sensing applications. Laser manufacturing is outstanding to this end for ease of beam manipulation, batch production, and no requirement for photomasks. It is, however, suffering from optical diffraction limits. Herein, we report a spatial resolution improved to the quantum limit by exploiting a threshold tracing and lock-in method, whereby the two-order gap between atomic point defect complexes and optical diffraction limit is surpassed, and a feature size of <5 nm is realized. The underlying physics is that the uncertainty of local atom thermal motion dominates electron excitation, rather than the power density slope of the incident laser. We show that the colour centre yield in hexagonal boron nitride is transformed from stochastic to deterministic, and the emission from individual sites becomes polychromatic to monochromatic. As a result, single colour centres in the regular array are deterministically created with a unity yield and high positional accuracy, serving as a step forward for integrated quantum technological applications.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3