Efficient ultrafast laser writing with elliptical polarization

Author:

Lei Yuhao,Shayeganrad GholamrezaORCID,Wang Huijun,Sakakura Masaaki,Yu Yanhao,Wang Lei,Kliukin Dmitrii,Skuja Linards,Svirko Yuri,Kazansky Peter G.

Abstract

AbstractPhotosensitivity in nature is commonly associated with stronger light absorption. It is also believed that artificial optical anisotropy to be the strongest when created by light with linear polarization. Contrary to intuition, ultrafast laser direct writing with elliptical polarization in silica glass, while nonlinear absorption is about 2.5 times weaker, results in form birefringence about twice that of linearly polarized light. Moreover, a larger concentration of anisotropic nanopores created by elliptically polarized light pulses is observed. The phenomenon is interpreted in terms of enhanced interaction of circularly polarized light with a network of randomly oriented bonds and hole polarons in silica glass, as well as efficient tunneling ionization produced by circular polarization. Applications to multiplexed optical data storage and birefringence patterning in silica glass are demonstrated.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3