Replica symmetry breaking in 1D Rayleigh scattering system: theory and validations

Author:

Qi Yifei,Ni Longqun,Ye Zhenyu,Zhang Jiaojiao,Bao Xingyu,Wang Pan,Rao YunjiangORCID,Raposo Ernesto P.ORCID,Gomes Anderson S. L.ORCID,Wang ZinanORCID

Abstract

AbstractSpin glass theory, as a paradigm for describing disordered magnetic systems, constitutes a prominent subject of study within statistical physics. Replica symmetry breaking (RSB), as one of the pivotal concepts for the understanding of spin glass theory, means that under identical conditions, disordered systems can yield distinct states with nontrivial correlations. Random fiber laser (RFL) based on Rayleigh scattering (RS) is a complex disordered system, owing to the disorder and stochasticity of RS. In this work, for the first time, a precise theoretical model is elaborated for studying the photonic phase transition via the platform of RS-based RFL, in which we clearly reveal that, apart from the pump power, the photon phase variation in RFL is also an analogy to the temperature term in spin-glass phase transition, leading to a novel insight into the intrinsic mechanisms of photonic phase transition. In addition, based on this model and real-time high-fidelity detection spectral evolution, we theoretically predict and experimentally observe the mode-asymmetric characteristics of photonic phase transition in RS-based RFL. This finding contributes to a deeper understanding of the photonic RSB regime and the dynamics of RS-based RFL.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3