Nonlinear encoding in diffractive information processing using linear optical materials

Author:

Li Yuhang,Li JingxiORCID,Ozcan AydoganORCID

Abstract

AbstractNonlinear encoding of optical information can be achieved using various forms of data representation. Here, we analyze the performances of different nonlinear information encoding strategies that can be employed in diffractive optical processors based on linear materials and shed light on their utility and performance gaps compared to the state-of-the-art digital deep neural networks. For a comprehensive evaluation, we used different datasets to compare the statistical inference performance of simpler-to-implement nonlinear encoding strategies that involve, e.g., phase encoding, against data repetition-based nonlinear encoding strategies. We show that data repetition within a diffractive volume (e.g., through an optical cavity or cascaded introduction of the input data) causes the loss of the universal linear transformation capability of a diffractive optical processor. Therefore, data repetition-based diffractive blocks cannot provide optical analogs to fully connected or convolutional layers commonly employed in digital neural networks. However, they can still be effectively trained for specific inference tasks and achieve enhanced accuracy, benefiting from the nonlinear encoding of the input information. Our results also reveal that phase encoding of input information without data repetition provides a simpler nonlinear encoding strategy with comparable statistical inference accuracy to data repetition-based diffractive processors. Our analyses and conclusions would be of broad interest to explore the push-pull relationship between linear material-based diffractive optical systems and nonlinear encoding strategies in visual information processors.

Funder

DOE | SC | Basic Energy Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3