Broadband picometer-scale resolution on-chip spectrometer with reconfigurable photonics

Author:

Yao Chunhui,Chen MinjiaORCID,Yan Ting,Ming Liang,Cheng QixiangORCID,Penty Richard

Abstract

AbstractMiniaturization of optical spectrometers is important to enable spectroscopic analysis to play a role in in situ, or even in vitro and in vivo characterization systems. However, scaled-down spectrometers generally exhibit a strong trade-off between spectral resolution and operating bandwidth, and are often engineered to identify signature spectral peaks only for specific applications. In this paper, we propose and demonstrate a novel global sampling strategy with distributed filters for generating ultra-broadband pseudo-random spectral responses. The geometry of all-pass ring filters is tailored to ensure small self- and cross-correlation for effective information acquisition across the whole spectrum, which dramatically reduces the requirement on sampling channels. We employ the power of reconfigurable photonics in spectrum shaping by embedding the engineered distributed filters. Using a moderate mesh of MZIs, we create 256 diverse spectral responses on a single chip and demonstrate a resolution of 20 pm for single spectral lines and 30 pm for dual spectral lines over a broad bandwidth of 115 nm, to the best of our knowledge achieving a new record of bandwidth-to-resolution ratio. Rigorous simulations reveal that this design will readily be able to achieve single-picometer-scale resolution. We further show that the reconfigurable photonics provides an extra degree of programmability, enabling user-defined features on resolution, computation complexity, and relative error. The use of SiN integration platform enables the spectrometer to exhibit excellent thermal stability of ±2.0 °C, effectively tackling the challenge of temperature variations at picometer-scale resolutions.

Funder

RCUK | Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3