Abstract
AbstractBrain-inspired neuromorphic computing, featured by parallel computing, is considered as one of the most energy-efficient and time-saving architectures for massive data computing. However, photonic synapse, one of the key components, is still suffering high power consumption, potentially limiting its applications in artificial neural system. In this study, we present a BP/CdS heterostructure-based artificial photonic synapse with ultra-low power consumption. The device shows remarkable negative light response with maximum responsivity up to 4.1 × 108 A W−1 at VD = 0.5 V and light power intensity of 0.16 μW cm−2 (1.78 × 108 A W−1 on average), which further enables artificial synaptic applications with average power consumption as low as 4.78 fJ for each training process, representing the lowest among the reported results. Finally, a fully-connected optoelectronic neural network (FONN) is simulated with maximum image recognition accuracy up to 94.1%. This study provides new concept towards the designing of energy-efficient artificial photonic synapse and shows great potential in high-performance neuromorphic vision systems.
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献