Deeply learned broadband encoding stochastic hyperspectral imaging

Author:

Zhang Wenyi,Song Hongya,He Xin,Huang Longqian,Zhang Xiyue,Zheng Junyan,Shen Weidong,Hao XiangORCID,Liu XuORCID

Abstract

AbstractMany applications requiring both spectral and spatial information at high resolution benefit from spectral imaging. Although different technical methods have been developed and commercially available, computational spectral cameras represent a compact, lightweight, and inexpensive solution. However, the tradeoff between spatial and spectral resolutions, dominated by the limited data volume and environmental noise, limits the potential of these cameras. In this study, we developed a deeply learned broadband encoding stochastic hyperspectral camera. In particular, using advanced artificial intelligence in filter design and spectrum reconstruction, we achieved 7000–11,000 times faster signal processing and ~10 times improvement regarding noise tolerance. These improvements enabled us to precisely and dynamically reconstruct the spectra of the entire field of view, previously unreachable with compact computational spectral cameras.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3