Abstract
AbstractRabi oscillation is an elementary laser-driven physical process in atoms and artificial atoms from solid-state systems, while it is rarely demonstrated in molecules. Here, we investigate the bond-length-dependent Rabi oscillations with varying Rabi frequencies in strong-laser-field dissociation of H2+. The coupling of the bond stretching and Rabi oscillations makes the nuclei gain different kinetic energies while the electron is alternatively absorbing and emitting photons. The resulting proton kinetic energy spectra show rich structures beyond the prediction of the Floquet theorem and the well-accepted resonant one-photon dissociation pathway. Our study shows that the laser-driven Rabi oscillations accompanied by nuclear motions are essential to understanding the bond-breaking mechanism and provide a time-resolved perspective to manipulate rich dynamics of the strong-laser-field dissociation of molecules.
Funder
National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献