Raman amplification at 2.2 μm in silicon core fibers with prospects for extended mid-infrared source generation

Author:

Huang MengORCID,Sun ShiyuORCID,Saini Than S.,Fu Qiang,Xu Lin,Wu Dong,Ren Haonan,Shen LiORCID,Hawkins Thomas W.,Ballato JohnORCID,Peacock Anna C.ORCID

Abstract

AbstractRaman scattering provides a convenient mechanism to generate or amplify light at wavelengths where gain is not otherwise available. When combined with recent advancements in high-power fiber lasers that operate at wavelengths ~2 μm, great opportunities exist for Raman systems that extend operation further into the mid-infrared regime for applications such as gas sensing, spectroscopy, and biomedical analyses. Here, a thulium-doped fiber laser is used to demonstrate Raman emission and amplification from a highly nonlinear silicon core fiber (SCF) platform at wavelengths beyond 2 μm. The SCF has been tapered to obtain a micrometer-sized core diameter (~1.6 μm) over a length of 6 cm, with losses as low as 0.2 dB cm−1. A maximum on-off peak gain of 30.4 dB was obtained using 10 W of peak pump power at 1.99 μm, with simulations indicating that the gain could be increased to up to ~50 dB by extending the SCF length. Simulations also show that by exploiting the large Raman gain and extended mid-infrared transparency of the SCF, cascaded Raman processes could yield tunable systems with practical output powers across the 2–5 μm range.

Funder

RCUK | Engineering and Physical Sciences Research Council

National Natural Science Foundation of China

J. E. Sirrine Foundation

National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3