Learnable digital signal processing: a new benchmark of linearity compensation for optical fiber communications

Author:

Niu Zekun,Yang Hang,Li Lyu,Shi Minghui,Xu Guozhi,Hu Weisheng,Yi Lilin

Abstract

AbstractThe surge in interest regarding the next generation of optical fiber transmission has stimulated the development of digital signal processing (DSP) schemes that are highly cost-effective with both high performance and low complexity. As benchmarks for nonlinear compensation methods, however, traditional DSP designed with block-by-block modules for linear compensations, could exhibit residual linear effects after compensation, limiting the nonlinear compensation performance. Here we propose a high-efficient design thought for DSP based on the learnable perspectivity, called learnable DSP (LDSP). LDSP reuses the traditional DSP modules, regarding the whole DSP as a deep learning framework and optimizing the DSP parameters adaptively based on backpropagation algorithm from a global scale. This method not only establishes new standards in linear DSP performance but also serves as a critical benchmark for nonlinear DSP designs. In comparison to traditional DSP with hyperparameter optimization, a notable enhancement of approximately 1.21 dB in the Q factor for 400 Gb/s signal after 1600 km fiber transmission is experimentally demonstrated by combining LDSP and perturbation-based nonlinear compensation algorithm. Benefiting from the learnable model, LDSP can learn the best configuration adaptively with low complexity, reducing dependence on initial parameters. The proposed approach implements a symbol-rate DSP with a small bit error rate (BER) cost in exchange for a 48% complexity reduction compared to the conventional 2 samples/symbol processing. We believe that LDSP represents a new and highly efficient paradigm for DSP design, which is poised to attract considerable attention across various domains of optical communications.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3