Abstract
AbstractIn situ and continuous monitoring of thermal effects is essential for understanding photo-induced catalytic processes at catalyst’s surfaces. However, existing techniques are largely unable to capture the rapidly changing temperatures occurring in sub-μm layers at liquid-solid interfaces exposed to light. To address this, a sensing system based on a gold-coated conventional single-mode optical fiber with a tilted fiber Bragg grating inscribed in the fiber core is proposed and demonstrated. The spectral transmission from these devices is made up of a dense comb of narrowband resonances that can differentiate between localized temperatures rapid changes at the catalyst’s surface and those of the environment. By using the gold coating of the fiber as an electrode in an electrochemical reactor and exposing it to light, thermal effects in photo-induced catalysis at the interface can be decoded with a temperature resolution of 0.1 °C and a temporal resolution of 0.1 sec, without perturbing the catalytic operation that is measured simultaneously. As a demonstration, stable and reproducible correlations between the light-to-heat conversion and catalytic activities over time were measured for two different catalysis processes (linear and nonlinear). These kinds of sensing applications are ideally suited to the fundamental qualities of optical fiber sensors, such as their compact size, flexible shape, and remote measurement capability, thereby opening the way for various thermal monitoring in hard-to-reach spaces and rapid catalytic reaction processes.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献