Formation and fluorescent mechanism of red emissive carbon dots from o-phenylenediamine and catechol system

Author:

Li Pengfei,Xue Shanshan,Sun Lu,Zong Xupeng,An Li,Qu DanORCID,Wang Xiayan,Sun ZaichengORCID

Abstract

AbstractCarbon dots (CDs) as the advancing fluorescent carbon nanomaterial have superior potential and prospective. However, the ambiguous photoluminescence (PL) mechanism and intricate structure-function relationship become the greatest hindrances in the development and applications of CDs. Herein, red emissive CDs were synthesized in high yield from o-phenylenediamine (oPD) and catechol (CAT). The PL mechanism of the CDs is considered as the molecular state fluorophores because 5,14-dihydroquinoxalino[2,3-b] phenazine (DHQP) is separated and exhibits the same PL properties and behavior as the CDs. These include the peak position and shape of the PL emission and PL excitation and the emission dependence on pH and solvent polarity. Both of them display close PL lifetime decays. Based on these, we deduce that DHQP is the fluorophore of the red emissive CDs and the PL mechanism of CDs is similar to DHQP. During the PL emission of CDs, the electron of the molecule state can transfer to CDs. The formation process of DHQP is further confirmed by the reaction intermediates (phthalazine, dimers) and oPD. These findings provide insights into the PL mechanism of this type of CDs and may guide the further development of tunable CDs for tailored properties.

Funder

National Natural Science Foundation of China

National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3