Dual-color terahertz spatial light modulator for single-pixel imaging

Author:

Li Weili,Hu Xuemei,Wu JingboORCID,Fan Kebin,Chen Benwen,Zhang Caihong,Hu WeiORCID,Cao Xun,Jin BiaobingORCID,Lu YanqingORCID,Chen JianORCID,Wu Peiheng

Abstract

AbstractSpatial light modulators (SLM), capable of dynamically and spatially manipulating electromagnetic waves, have reshaped modern life in projection display and remote sensing. The progress of SLM will expedite next-generation communication and biomedical imaging in the terahertz (THz) range. However, most current THz SLMs are adapted from optical alternatives that still need improvement in terms of uniformity, speed, and bandwidth. Here, we designed, fabricated, and characterized an 8 × 8 THz SLM based on tunable liquid crystal metamaterial absorbers for THz single-pixel compressive imaging. We demonstrated dual-color compressive sensing (CS) imaging for dispersive objects utilizing the large frequency shift controlled by an external electric field. We developed auto-calibrated compressive sensing (ACS) algorithm to mitigate the impact of the spatially nonuniform THz incident beam and pixel modulation, which significantly improves the fidelity of reconstructed images. Furthermore, the complementary modulation at two absorption frequencies enables Hadamard masks with negative element values to be realized by frequency-switching, thereby halving the imaging time. The demonstrated imaging system paves a new route for THz single-pixel multispectral imaging with high reliability and low cost.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3