Mid-infrared single-photon 3D imaging

Author:

Fang Jianan,Huang KunORCID,Wu E,Yan Ming,Zeng HepingORCID

Abstract

AbstractActive mid-infrared (MIR) imagers capable of retrieving three-dimensional (3D) structure and reflectivity information are highly attractive in a wide range of biomedical and industrial applications. However, infrared 3D imaging at low-light levels is still challenging due to the deficiency of sensitive and fast MIR sensors. Here we propose and implement a MIR time-of-flight imaging system that operates at single-photon sensitivity and femtosecond timing resolution. Specifically, back-scattered infrared photons from a scene are optically gated by delay-controlled ultrashort pump pulses through nonlinear frequency upconversion. The upconverted images with time stamps are then recorded by a silicon camera to facilitate the 3D reconstruction with high lateral and depth resolutions. Moreover, an effective numerical denoiser based on spatiotemporal correlation allows us to reveal the object profile and reflectivity under photon-starving conditions with a detected flux below 0.05 photons/pixel/second. The presented MIR 3D imager features high detection sensitivity, precise timing resolution, and wide-field operation, which may open new possibilities in life and material sciences.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3