Defocused imaging-based quantification of plasmon-induced distortion of single emitter emission

Author:

Moon Gwiyeong,Son Taehwang,Yoo Hajun,Lee Changhun,Lee Hyunwoong,Im SeongminORCID,Kim DonghyunORCID

Abstract

AbstractOptical properties of single emitters can be significantly improved through the interaction with plasmonic structures, leading to enhanced sensing and imaging capabilities. In turn, single emitters can act as sensitive probes of the local electromagnetic field surrounding plasmonic structures, furnishing fundamental insights into their physics and guiding the design of novel plasmonic devices. However, the interaction of emitters in the proximity to a plasmonic nanostructure causes distortion, which hinders precise estimation of position and polarization state and is one of the reasons why detection and quantification of molecular processes yet remain fundamentally challenging in this era of super-resolution. Here, we investigate axially defocused images of a single fluorescent emitter near metallic nanostructure, which encode emitter positions and can be acquired in the far-field with high sensitivity, while analyzing the images with pattern matching algorithm to explore emitter-localized surface plasmon interaction and retrieve information regarding emitter positions. Significant distortion in defocused images of fluorescent beads and quantum dots near nanostructure was observed and analyzed by pattern matching and finite-difference time-domain methods, which revealed that the distortion arises from the emitter interaction with nanostructure. Pattern matching algorithm was also adopted to estimate the lateral positions of a dipole that models an emitter utilizing the distorted defocused images and achieved improvement by more than 3 times over conventional diffraction-limited localization methods. The improvement by defocused imaging is expected to provide a way of enhancing reliability when using plasmonic nanostructure and diversifying strategies for various imaging and sensing modalities.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3