Abstract
AbstractHot charge carriers (HC) are photoexcited electrons and holes that exist in nonequilibrium high-energy states of photoactive materials. Prolonged cooling time and rapid extraction are the current challenges for the development of future innovative HC-based optoelectronic devices, such as HC solar cells (HCSCs), hot energy transistors (HETs), HC photocatalytic reactors, and lasing devices. Based on a thorough analysis of the basic mechanisms of HC generation, thermalization, and cooling dynamics, this review outlines the various possible strategies to delay the HC cooling as well as to speed up their extraction. Various materials with slow cooling behavior, including perovskites and other semiconductors, are thoroughly presented. In addition, the opportunities for the generation of plasmon-induced HC through surface plasmon resonance and their technological applications in hybrid nanostructures are discussed in detail. By judiciously designing the plasmonic nanostructures, the light coupling into the photoactive layer and its optical absorption can be greatly enhanced as well as the successful conversion of incident photons to HC with tunable energies can also be realized. Finally, the future outlook of HC in optoelectronics is highlighted which will provide great insight to the research community.
Funder
Shanghai Science and Technology Development Foundation
Shanghai Science and Technology Innovation Action Plan, Belt & Road Young Scientist Program
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献