Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser

Author:

Qiao Shunda,He Ying,Sun Haiyue,Patimisco Pietro,Sampaolo Angelo,Spagnolo VincenzoORCID,Ma YufeiORCID

Abstract

AbstractPhotoacoustic spectroscopy (PAS) as a highly sensitive and selective trace gas detection technique has extremely broad application in many fields. However, the laser sources currently used in PAS limit the sensing performance. Compared to diode laser and quantum cascade laser, the solid-state laser has the merits of high optical power, excellent beam quality, and wide tuning range. Here we present a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser used as light source in a PAS sensor for trace gas detection. The self-built solid-state laser had an emission wavelength of ~2 μm with Tm:YAP crystal as the gain material, with an excellent wavelength and optical power stability as well as a high beam quality. The wide wavelength tuning range of 9.44 nm covers the absorption spectra of water and ammonia, with a maximum optical power of ~130 mW, allowing dual gas detection with a single laser source. The solid-state laser was used as light source in three different photoacoustic detection techniques: standard PAS with microphone, and external- and intra-cavity quartz-enhanced photoacoustic spectroscopy (QEPAS), proving that solid-state laser is an attractive excitation source in photoacoustic spectroscopy.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3