Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities

Author:

Dover Nicholas P.ORCID,Ziegler TimORCID,Assenbaum StefanORCID,Bernert ConstantinORCID,Bock StefanORCID,Brack Florian-Emanuel,Cowan Thomas E.ORCID,Ditter Emma J.,Garten Marco,Gaus Lennart,Goethel Ilja,Hicks George S.,Kiriyama Hiromitsu,Kluge ThomasORCID,Koga James K.ORCID,Kon Akira,Kondo Kotaro,Kraft StephanORCID,Kroll Florian,Lowe Hazel F.,Metzkes-Ng Josefine,Miyatake Tatsuhiko,Najmudin Zulfikar,Püschel Thomas,Rehwald Martin,Reimold Marvin,Sakaki Hironao,Schlenvoigt Hans-PeterORCID,Shiokawa Keiichiro,Umlandt Marvin E. P.ORCID,Schramm UlrichORCID,Zeil KarlORCID,Nishiuchi MamikoORCID

Abstract

AbstractLaser-driven ion sources are a rapidly developing technology producing high energy, high peak current beams. Their suitability for applications, such as compact medical accelerators, motivates development of robust acceleration schemes using widely available repetitive ultraintense femtosecond lasers. These applications not only require high beam energy, but also place demanding requirements on the source stability and controllability. This can be seriously affected by the laser temporal contrast, precluding the replication of ion acceleration performance on independent laser systems with otherwise similar parameters. Here, we present the experimental generation of >60 MeV protons and >30 MeV u−1 carbon ions from sub-micrometre thickness Formvar foils irradiated with laser intensities >1021 Wcm2. Ions are accelerated by an extreme localised space charge field ≳30 TVm−1, over a million times higher than used in conventional accelerators. The field is formed by a rapid expulsion of electrons from the target bulk due to relativistically induced transparency, in which relativistic corrections to the refractive index enables laser transmission through normally opaque plasma. We replicate the mechanism on two different laser facilities and show that the optimum target thickness decreases with improved laser contrast due to reduced pre-expansion. Our demonstration that energetic ions can be accelerated by this mechanism at different contrast levels relaxes laser requirements and indicates interaction parameters for realising application-specific beam delivery.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3