Abstract
AbstractThe long-standing challenge in designing far-infrared transparent conductors (FIRTC) is the combination of high plasma absorption edge (λp) and high conductivity (σ). These competing requirements are commonly met by tuning carrier concentration or/and effective carrier mass in a metal oxide/oxonate with low optical dielectric constant (εopt = 2–7). However, despite the high σ, the transparent band is limited to mid-infrared (λp < 5 μm). In this paper, we break the trade-off between high σ and λp by increasing the “so-called constant” εopt that has been neglected, and successfully develop the material family of FIRTC with εopt > 15 and λp > 15 μm. These FIRTC crystals are mainly octahedrally-coordinated heavy-metal chalcogenides and their solid solutions with shallow-level defects. Their high εopt relies on the formation of electron-deficiency multicenter bonds resulting in the great electron-polarization effect. The new FIRTC enables us to develop the first “continuous film” type far-infrared electromagnetic shielder that is unattainable using traditional materials. Therefore, this study may inaugurate a new era in far-infrared optoelectronics.
Funder
National Natural Science Foundation of China
KLOMT Key Laboratory Open Project
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献