A novel scheme for ultrashort terahertz pulse generation over a gapless wide spectral range: Raman-resonance-enhanced four-wave mixing

Author:

Le Jiaming,Su Yudan,Tian ChuanshanORCID,Kung A. H.,Shen Y. Ron

Abstract

AbstractUltrashort energetic terahertz (THz) pulses have created an exciting new area of research on light interactions with matter. For material studies in small laboratories, widely tunable femtosecond THz pulses with peak field strength close to MV cm−1 are desired. Currently, they can be largely acquired by optical rectification and difference frequency generation in crystals without inversion symmetry. We describe in this paper a novel scheme of THz pulse generation with no frequency tuning gap based on Raman-resonance-enhanced four-wave mixing in centrosymmetric media, particularly diamond. We show that we could generate highly stable, few-cycle pulses with near-Gaussian spatial and temporal profiles and carrier frequency tunable from 5 to >20 THz. They had a stable and controllable carrier-envelop phase and carried ~15 nJ energy per pulse at 10 THz (with a peak field strength of ~1 MV cm−1 at focus) from a 0.5-mm-thick diamond. The measured THz pulse characteristics agreed well with theoretical predictions. Other merits of the scheme are discussed, including the possibility of improving the THz output energy to a much higher level.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3