Abstract
AbstractRadiometric calibration (RC) is an essential solution to guarantee measurements from infrared photonic sensors with certain accuracy, the main task of which is to determine the radiometric responsivity of sensor and usually be solved by comparing with some radiation source (i.e., blackbody), called source-based RC (SBRC). In addition to the complexity in manufacture, the nonideal characteristics of an available source will inevitably introduce unexpected uncertainties to reduce the final calibration accuracy by around 0.2–0.5 K in SBRC. Therefore, we propose an original source-independent RC (SIRC) principle based on modeling instead of comparing for SBRC, where the incident background radiation to detector, as a dominated factor influencing the responsivity characteristics of a photonic sensor, is modeled to implement RC for both two fundamental types (photoconductive and photovoltaic) of HgCdTe photonic detectors. The SIRC merely requires the temperature information of main components of a sensor other than some complex source and its assembly, and provides a traceable way at lower uncertainty costs relative to the traditional SBRC. The SIRC is being implemented in Fengyun-2 satellites since 2019, which ensures a long-term stable service of Chinese geostationary meteorological satellites for the global observation system under the framework of World Meteorological Organization. Moreover, a 20-year-period traceable Fengyun-2 dataset to be recalibrated with SIRC will benefit the further climate applications.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献