Abstract
AbstractComputer-generated holography is a promising technique that modulates user-defined wavefronts with digital holograms. Computing appropriate holograms with faithful reconstructions is not only a problem closely related to the fundamental basis of holography but also a long-standing challenge for researchers in general fields of optics. Finding the exact solution of a desired hologram to reconstruct an accurate target object constitutes an ill-posed inverse problem. The general practice of single-diffraction computation for synthesizing holograms can only provide an approximate answer, which is subject to limitations in numerical implementation. Various non-convex optimization algorithms are thus designed to seek an optimal solution by introducing different constraints, frameworks, and initializations. Herein, we overview the optimization algorithms applied to computer-generated holography, incorporating principles of hologram synthesis based on alternative projections and gradient descent methods. This is aimed to provide an underlying basis for optimized hologram generation, as well as insights into the cutting-edge developments of this rapidly evolving field for potential applications in virtual reality, augmented reality, head-up display, data encryption, laser fabrication, and metasurface design.
Publisher
Springer Science and Business Media LLC
Reference221 articles.
1. Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).
2. Leith, E. N. & Upatnieks, J. Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123–1130 (1962).
3. Denisyuk, Y. N. Photographic reconstruction of the optical properties of an object in its own scattered radiation field. Soviet Phys. Doklady 7, 543 (1962).
4. Goodman, J. W. & Lawrence, R. W. Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967).
5. Situ, G. H. Deep holography. Light Adv. Manuf. 3, 13 (2022).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献