A straightforward spectral emissivity estimating method based on constructing random rough surfaces

Author:

Zhang ZezhanORCID,Chen Mengchao,Zhang Lichuan,Li Hongzu,Huang Hairui,Zhang Zilong,Yu Peifeng,Niu Yi,Gao ShanORCID,Wang Chao,Jiang Jing

Abstract

AbstractSpectral emissivity is an essential and sensitive parameter to characterize the radiative capacity of the solid surface in scientific and engineering applications, which would be non-negligibly affected by surface morphology. However, there is a lack of assessment of the effect of roughness on emissivity and a straightforward method for estimating the emissivity of rough surfaces. This paper established an estimating method based on constructing random rough surfaces to predict rough surface (Geometric region) emissivity for metal solids. Based on this method, the emissivity of ideal gray and non-gray body surfaces was calculated and analyzed. The calculated and measured spectral emissivities of GH3044, K465, DD6, and TC4 alloys with different roughness were compared. The results show that the emissivity increases with the roughness degree, and the enhancement effect weakens with the increase of roughness or emissivity due to the existing limit (emissivity ε = 1.0). At the same time, the roughness would not change the overall spectral distribution characteristics but may attenuate the local features of the spectral emissivity. The estimated results are in good agreement with the experimental data for the above alloys’ rough surfaces. This study provides a new reliable approach to obtaining the spectral emissivity of rough surfaces. This approach is especially beneficial for measuring objects in extreme environments where emissivity is difficult to obtain. Meanwhile, this study promotes an understanding of surface morphology’s effect mechanism on emissivity.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3