Abstract
AbstractWavelength-tunable structural colors using stimuli-responsive materials, such as chiral liquid crystals (CLCs), have attracted increasing attention owing to their high functionality in various tunable photonic applications. Ideally, on-demand omnidirectional wavelength control is highly desirable from the perspective of wavelength-tuning freedom. However, despite numerous previous research efforts on tunable CLC structural colors, only mono-directional wavelength tuning toward shorter wavelengths has been employed in most studies to date. In this study, we report the ideally desired omnidirectional wavelength control toward longer and shorter wavelengths with significantly improved tunability over a broadband wavelength range. By using areal expanding and contractive strain control of dielectric elastomer actuators (DEAs) with chiral liquid crystal elastomers (CLCEs), simultaneous and omnidirectional structural color-tuning control was achieved. This breakthrough in omnidirectional wavelength control enhances the achievable tuning freedom and versatility, making it applicable to a broad range of high-functional photonic applications.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献