Correlated optical convolutional neural network with “quantum speedup”

Author:

Sun Yifan,Li Qian,Kong Ling-Jun,Zhang Xiangdong

Abstract

AbstractCompared with electrical neural networks, optical neural networks (ONNs) have the potentials to break the limit of the bandwidth and reduce the consumption of energy, and therefore draw much attention in recent years. By far, several types of ONNs have been implemented. However, the current ONNs cannot realize the acceleration as powerful as that indicated by the models like quantum neural networks. How to construct and realize an ONN with the quantum speedup is a huge challenge. Here, we propose theoretically and demonstrate experimentally a new type of optical convolutional neural network by introducing the optical correlation. It is called the correlated optical convolutional neural network (COCNN). We show that the COCNN can exhibit “quantum speedup” in the training process. The character is verified from the two aspects. One is the direct illustration of the faster convergence by comparing the loss function curves of the COCNN with that of the traditional convolutional neural network (CNN). Such a result is compatible with the training performance of the recently proposed quantum convolutional neural network (QCNN). The other is the demonstration of the COCNN’s capability to perform the QCNN phase recognition circuit, validating the connection between the COCNN and the QCNN. Furthermore, we take the COCNN analog to the 3-qubit QCNN phase recognition circuit as an example and perform an experiment to show the soundness and the feasibility of it. The results perfectly match the theoretical calculations. Our proposal opens up a new avenue for realizing the ONNs with the quantum speedup, which will benefit the information processing in the era of big data.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3