Compact ultrabroadband light-emitting diodes based on lanthanide-doped lead-free double perovskites

Author:

Jin Shilin,Li RenfuORCID,Huang Hai,Jiang Naizhong,Lin Jidong,Wang Shaoxiong,Zheng YuanhuiORCID,Chen XueyuanORCID,Chen DaqinORCID

Abstract

AbstractImpurity doping is an effective approach to tuning the optoelectronic performance of host materials by imparting extrinsic electronic channels. Herein, a family of lanthanide (Ln3+) ions was successfully incorporated into a Bi:Cs2AgInCl6 lead-free double-perovskite (DP) semiconductor, expanding the spectral range from visible (Vis) to near-infrared (NIR) and improving the photoluminescence quantum yield (PLQY). After multidoping with Nd, Yb, Er and Tm, Bi/Ln:Cs2AgInCl6 yielded an ultrabroadband continuous emission spectrum with a full width at half-maximum of ~365 nm originating from intrinsic self-trapped exciton recombination and abundant 4f–4f transitions of the Ln3+ dopants. Steady-state and transient-state spectra were used to ascertain the energy transfer and emissive processes. To avoid adverse energy interactions between the various Ln3+ ions in a single DP host, a heterogeneous architecture was designed to spatially confine different Ln3+ dopants via a “DP-in-glass composite” (DiG) structure. This bottom-up strategy endowed the prepared Ln3+-doped DIG with a high PLQY of 40% (nearly three times as high as that of the multidoped DP) and superior long-term stability. Finally, a compact Vis–NIR ultrabroadband (400~2000 nm) light source was easily fabricated by coupling the DiG with a commercial UV LED chip, and this light source has promising applications in nondestructive spectroscopic analyses and multifunctional lighting.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3