Abstract
AbstractThe rapid development of space-time-coding metasurfaces (STCMs) offers a new avenue to manipulate spatial electromagnetic beams, waveforms, and frequency spectra simultaneously with high efficiency. To date, most studies are primarily focused on harmonic generations and independent controls of finite-order harmonics and their spatial waves, but the manipulations of continuously temporal waveforms that include much rich frequency spectral components are still limited in both theory and experiment based on STCM. Here, we propose a theoretical framework and method to generate frequency-modulated continuous waves (FMCWs) and control their spatial propagation behaviors simultaneously via a novel STCM with nonlinearly periodic phases. Since the carrier frequency of FMCW changes with time rapidly, we can produce customized time-varying reflection phases at will by the required FMCW under the illumination of a monochromatic wave. More importantly, the propagation directions of the time-varying beams can be controlled by encoding the metasurface with different initial phase gradients. A programmable STCM prototype with a full-phase range is designed and fabricated to realize reprogrammable FMCW functions, and experimental results show good agreement with the theoretical analyses.
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献