Author:
Zhao Jingyue,Monforte Marco,Indiveri Giacomo,Bartolozzi Chiara,Donati Elisa
Abstract
AbstractCurrent low-latency neuromorphic processing systems hold great potential for developing autonomous artificial agents. However, the variable nature and low precision of the underlying hardware substrate pose severe challenges for robust and reliable performance. To address these challenges, we adopt hardware-friendly processing strategies based on brain-inspired computational primitives, such as triplet spike-timing dependent plasticity, basal ganglia-inspired disinhibition, and cooperative-competitive networks and apply them to motor control. We demonstrate this approach by presenting an example of robust online motor control using a hardware spiking neural network implemented on a mixed-signal neuromorphic processor, trained to learn the inverse kinematics of a two-joint robotic arm. The final system is able to perform low-latency control robustly and reliably using noisy silicon neurons. The spiking neural network, trained to control two joints of the iCub robot arm simulator, performs a continuous target-reaching task with 97.93% accuracy, 33.96 ms network latency, 102.1 ms system latency, and with an estimated power consumption of 26.92 μW during inference (control). This work provides insights into how specific computational primitives used by real neural systems can be applied to neuromorphic computing for solving real-world engineering tasks. It represents a milestone in the design of end-to-end spiking robotic control systems, relying on event-driven sensory encoding, neuromorphic processing, and spiking motor control.
Funder
European Union’s Horizon 2020 Research and Innovation Program, European Research Council
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献