Learning inverse kinematics using neural computational primitives on neuromorphic hardware

Author:

Zhao Jingyue,Monforte Marco,Indiveri Giacomo,Bartolozzi Chiara,Donati Elisa

Abstract

AbstractCurrent low-latency neuromorphic processing systems hold great potential for developing autonomous artificial agents. However, the variable nature and low precision of the underlying hardware substrate pose severe challenges for robust and reliable performance. To address these challenges, we adopt hardware-friendly processing strategies based on brain-inspired computational primitives, such as triplet spike-timing dependent plasticity, basal ganglia-inspired disinhibition, and cooperative-competitive networks and apply them to motor control. We demonstrate this approach by presenting an example of robust online motor control using a hardware spiking neural network implemented on a mixed-signal neuromorphic processor, trained to learn the inverse kinematics of a two-joint robotic arm. The final system is able to perform low-latency control robustly and reliably using noisy silicon neurons. The spiking neural network, trained to control two joints of the iCub robot arm simulator, performs a continuous target-reaching task with 97.93% accuracy, 33.96 ms network latency, 102.1 ms system latency, and with an estimated power consumption of 26.92 μW during inference (control). This work provides insights into how specific computational primitives used by real neural systems can be applied to neuromorphic computing for solving real-world engineering tasks. It represents a milestone in the design of end-to-end spiking robotic control systems, relying on event-driven sensory encoding, neuromorphic processing, and spiking motor control.

Funder

European Union’s Horizon 2020 Research and Innovation Program, European Research Council

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3