Ultrafast X-ray imaging of the light-induced phase transition in VO2

Author:

Johnson Allan S.ORCID,Perez-Salinas Daniel,Siddiqui Khalid M.,Kim Sungwon,Choi SungwookORCID,Volckaert Klara,Majchrzak Paulina E.ORCID,Ulstrup SørenORCID,Agarwal Naman,Hallman Kent,Haglund Richard F.ORCID,Günther Christian M.ORCID,Pfau BastianORCID,Eisebitt Stefan,Backes DirkORCID,Maccherozzi Francesco,Fitzpatrick Ann,Dhesi Sarnjeet S.ORCID,Gargiani PierluigiORCID,Valvidares ManuelORCID,Artrith NongnuchORCID,de Groot Frank,Choi Hyeongi,Jang Dogeun,Katoch Abhishek,Kwon Soonnam,Park Sang Han,Kim HyunjungORCID,Wall Simon E.ORCID

Abstract

AbstractUsing light to control transient phases in quantum materials is an emerging route to engineer new properties and functionality, with both thermal and non-thermal phases observed out of equilibrium. Transient phases are expected to be heterogeneous, either through photo-generated domain growth or by generating topological defects, and this impacts the dynamics of the system. However, this nanoscale heterogeneity has not been directly observed. Here we use time- and spectrally resolved coherent X-ray imaging to track the prototypical light-induced insulator-to-metal phase transition in vanadium dioxide on the nanoscale with femtosecond time resolution. We show that the early-time dynamics are independent of the initial spatial heterogeneity and observe a 200 fs switch to the metallic phase. A heterogeneous response emerges only after hundreds of picoseconds. Through spectroscopic imaging, we reveal that the transient metallic phase is a highly orthorhombically strained rutile metallic phase, an interpretation that is in contrast to those based on spatially averaged probes. Our results demonstrate the critical importance of spatially and spectrally resolved measurements for understanding and interpreting the transient phases of quantum materials.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3