Abstract
AbstractCurrent optical atomic clocks do not utilize their resources optimally. In particular, an exponential gain in sensitivity could be achieved if multiple atomic ensembles were to be controlled or read out individually, even without entanglement. However, controlling optical transitions locally remains an outstanding challenge for neutral-atom-based clocks and quantum computing platforms. Here we show arbitrary, single-site addressing for an optical transition via sub-wavelength controlled moves of atoms trapped in tweezers. The scheme is highly robust as it relies only on the relative position changes of tweezers and requires no additional addressing beams. Using this technique, we implement single-shot, dual-quadrature readout of Ramsey interferometry using two atomic ensembles simultaneously, and show an enhancement of the usable interrogation time at a given phase-slip error probability. Finally, we program a sequence that performs local dynamical decoupling during Ramsey evolution to evolve three ensembles with variable phase sensitivities, a key ingredient of optimal clock interrogation. Our results demonstrate the potential of fully programmable quantum optical clocks even without entanglement and could be combined with metrologically useful entangled states in the future.
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献