Demonstration of momentum cooling to enhance the potential of cancer treatment with proton therapy

Author:

Maradia VivekORCID,Meer David,Dölling Rudolf,Weber Damien C.,Lomax Antony J.,Psoroulas SerenaORCID

Abstract

AbstractIn recent years, there has been a considerable push towards ultrahigh dose rates in proton therapy to effectively utilize motion mitigation strategies and potentially increase the sparing of healthy tissue through the so-called FLASH effect. However, in cyclotron-based proton therapy facilities, it is difficult to reach ultrahigh dose rates for low-energy beams. The main reason for this lies in the large momentum spread that such beams have after reducing their energy to levels required for proton therapy, incurring large losses in conventionally used momentum or energy selection slits. Here we propose momentum cooling by using a wedge in the energy selection system (instead of a slit) to reduce the momentum spread of the beam without introducing substantial beam losses. We demonstrate this concept in our eye treatment beamline and obtain a factor of two higher transmission, which could eventually halve the treatment delivery time. Furthermore, we show that with a gantry design incorporating this feature, we can achieve almost a factor of 100 higher transmission for a 70 MeV beam compared with conventional cyclotron-based facilities. This concept could enhance the potential of proton therapy by opening up possibilities of treating new indications and reducing the cost.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3