Abstract
AbstractIt is an open question whether mechanical resonators can be made nonlinear with vibrations approaching the quantum ground state. This requires the engineering of a mechanical nonlinearity far beyond what has been realized so far. Here we discover a mechanism to boost the Duffing nonlinearity by coupling the vibrations of a nanotube resonator to single-electron tunnelling and by operating the system in the ultrastrong-coupling regime. We find that thermal vibrations become highly nonlinear when lowering the temperature. The average vibration amplitude at the lowest temperature is 13 times the zero-point motion, with approximately 42% of the thermal energy stored in the anharmonic part of the potential. Our work may enable the realization of mechanical Schrödinger cat states, mechanical qubits and quantum simulators emulating the electron–phonon coupling.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference44 articles.
1. Pirkkalainen, J.-M., Damskägg, E., Brandt, M., Massel, F. & Sillanpää, M. A. Squeezing of quantum noise of motion in a micromechanical resonator. Phys. Rev. Lett. 115, 243601 (2015).
2. Lecocq, F., Clark, J. B., Simmonds, R. W., Aumentado, J. & Teufel, J. D. Quantum nondemolition measurement of a nonclassical state of a massive object. Phys. Rev. X 5, 041037 (2015).
3. Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).
4. Suh, J. et al. Mechanically detecting and avoiding the quantum fluctuations of a microwave field. Science 344, 1262–1265 (2014).
5. Ockeloen-Korppi, C. F. et al. Quantum backaction evading measurement of collective mechanical modes. Phys. Rev. Lett. 117, 140401 (2016).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献