Abstract
AbstractWhen a single electron is confined to an impurity state in a metal, a many-body resonance emerges at the Fermi energy if the electron bath screens the impurity’s magnetic moment. This is the Kondo effect, originally introduced to explain the abnormal resistivity behaviour in bulk magnetic alloys, and it has been realized in many quantum systems over the past decades, ranging from heavy-fermion lattices down to adsorbed single atoms. Here we describe a Kondo system that allows us to experimentally resolve the spectral function consisting of impurity levels and a Kondo resonance in a large Kondo temperature range, as well as their spatial modulation. Our approach is based on a discrete half-filled quantum confined state within a MoS2 grain boundary, which—in conjunction with numerical renormalization group calculations—enables us to test the predictive power of the Anderson model that is the basis of the microscopic understanding of Kondo physics.
Funder
Deutsche Forschungsgemeinschaft
JARA (Jülich Aachen Research Alliance) for time on supercomputer JURECA
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference34 articles.
1. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).
2. Li, J., Schneider, W. D., Berndt, R. & Delley, B. Kondo scattering observed at a single magnetic impurity. Phys. Rev. Lett. 80, 2893–2896 (1998).
3. Ternes, M., Heinrich, A. J. & Schneider, W.-D. Spectroscopic manifestations of the Kondo effect on single adatoms. J. Phys.: Condens. Matter 21, 053001 (2008).
4. Ternes, M. Spin excitations and correlations in scanning tunneling spectroscopy. New J. Phys. 17, 063016 (2015).
5. Bouaziz, J., Mendes Guimarães, F. S. & Lounis, S. A new view on the origin of zero-bias anomalies of Co atoms atop noble metal surfaces. Nat. Commun. 11, 6112 (2020).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献