Self-regulation of phenotypic noise synchronizes emergent organization and active transport in confluent microbial environments

Author:

Dhar Jayabrata,Thai Anh L. P.,Ghoshal Arkajyoti,Giomi LucaORCID,Sengupta AnupamORCID

Abstract

AbstractThe variation associated with different observable characteristics—phenotypes—at the cellular scale underpins homeostasis and the fitness of living systems. However, if and how these noisy phenotypic traits shape properties at the population level remains poorly understood. Here we report that phenotypic noise self-regulates with growth and coordinates collective structural organization, the kinetics of topological defects and the emergence of active transport around confluent colonies. We do this by cataloguing key phenotypic traits in bacteria growing under diverse conditions. Our results reveal a statistically precise critical time for the transition from a monolayer biofilm to a multilayer biofilm, despite the strong noise in the cell geometry and the colony area at the onset of the transition. This reveals a mitigation mechanism between the noise in the cell geometry and the growth rate that dictates the narrow critical time window. By uncovering how rectification of phenotypic noise homogenizes correlated collective properties across colonies, our work points at an emergent strategy that confluent systems employ to tune active transport, buffering inherent heterogeneities associated with natural cellular environment settings.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3