Author:
,Bogomilov M.,Tsenov R.,Vankova-Kirilova G.,Song Y. P.,Tang J. Y.,Li Z. H.,Bertoni R.,Bonesini M.,Chignoli F.,Mazza R.,de Bari A.,Orestano D.,Tortora L.,Kuno Y.,Sakamoto H.,Sato A.,Ishimoto S.,Chung M.,Sung C. K.,Filthaut F.,Fedorov M.,Jokovic D.,Maletic D.,Savic M.,Jovancevic N.,Nikolov J.,Vretenar M.,Ramberger S.,Asfandiyarov R.,Blondel A.,Drielsma F.,Karadzhov Y.,Boyd S.,Greis J. R.,Lord T.,Pidcott C.,Taylor I.,Charnley G.,Collomb N.,Dumbell K.,Gallagher A.,Grant A.,Griffiths S.,Hartnett T.,Martlew B.,Moss A.,Muir A.,Mullacrane I.,Oates A.,Owens P.,Stokes G.,Warburton P.,White C.,Adams D.,Bayliss V.,Boehm J.,Bradshaw T. W.,Brown C.,Courthold M.,Govans J.,Hayler T.,Hills M.,Lagrange J. B.,Macwaters C.,Nichols A.,Preece R.,Ricciardi S.,Rogers C.,Stanley T.,Tarrant J.,Tucker M.,Watson S.,Wilson A.,Bayes R.,Nugent J. C.,Soler F. J. P.,Chatzitheodoridis G. T.,Dick A. J.,Ronald K.,Whyte C. G.,Young A. R.,Gamet R.,Cooke P.,Blackmore V. J.,Colling D.,Dobbs A.,Dornan P.,Franchini P.,Hunt C.,Jurj P. B.,Kurup A.,Long K.,Martyniak J.,Middleton S.,Pasternak J.,Uchida M. A.,Cobb J. H.,Booth C. N.,Hodgson P.,Langlands J.,Overton E.,Pec V.,Smith P. J.,Wilbur S.,Ellis M.,Gardener R. B. S.,Kyberd P.,Nebrensky J. J.,DeMello A.,Gourlay S.,Lambert A.,Li D.,Luo T.,Prestemon S.,Virostek S.,Palmer M.,Witte H.,Adey D.,Bross A. D.,Bowring D.,Liu A.,Neuffer D.,Popovic M.,Rubinov P.,Freemire B.,Hanlet P.,Kaplan D. M.,Mohayai T. A.,Rajaram D.,Snopok P.,Torun Y.,Cremaldi L. M.,Sanders D. A.,Coney L. R.,Hanson G. G.,Heidt C.
Abstract
AbstractAccelerated muon beams have been considered for the next-generation studies of high-energy lepton–antilepton collisions and neutrino oscillations. However, high-brightness muon beams have not yet been produced. The main challenge for muon acceleration and storage stems from the large phase-space volume occupied by the beam, derived from the production mechanism of muons through the decay of pions. The phase-space volume of the muon beam can be decreased through ionization cooling. Here we show that ionization cooling leads to a reduction in the transverse emittance of muon beams that traverse lithium hydride or liquid hydrogen absorbers in the Muon Ionization Cooling Experiment. Our results represent a substantial advance towards the realization of muon-based facilities that could operate at the energy and intensity frontiers.