Enhancement of superexchange due to synergetic breathing and hopping in corner-sharing cuprates

Author:

Bogdanov Nikolay A.ORCID,Li Manni GiovanniORCID,Sharma Sandeep,Gunnarsson Olle,Alavi Ali

Abstract

AbstractCuprates with corner-sharing CuO4 plaquettes have received much attention owing to the discoveries of high-temperature superconductivity and exotic states where spin and charge or spin and orbital degrees of freedom are separated. In these systems spins are strongly coupled antiferromagnetically via superexchange mechanisms, with high nearest-neighbour coupling varying among different compounds. The electronic properties of cuprates are also known to be highly sensitive to the presence, distance and displacement of apical oxygens perpendicular to the CuO2 planes. Here we present ab initio quantum chemistry calculations of the nearest-neighbour superexchange antiferromagnetic (AF) coupling J of two cuprates, Sr2CuO3 and La2CuO4. The former lacks apical oxygens, whilst the latter contain two apical oxygens per CuO2 unit completing a distorted octahedral environment around each Cu atom. Good agreement is obtained with experimental estimates for both systems. Analysis of the correlated wavefunctions together with extended superexchange models shows that there is an important synergetic effect of the Coulomb interaction and the O–Cu hopping, namely a correlated breathing-enhanced hopping mechanism. This is a new ingredient in superexchange models. Suppression of this mechanism leads to drastic reduction in the AF coupling, indicating that it is of primary importance in generating the strong interactions. We also find that J increases substantially as the distance between Cu and apical O is increased.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3