Abstract
AbstractCooper pairs in non-centrosymmetric superconductors can acquire finite centre-of-mass momentum in the presence of an external magnetic field. Recent theory predicts that such finite-momentum pairing can lead to an asymmetric critical current, where a dissipationless supercurrent can flow along one direction but not in the opposite one. Here we report the discovery of a giant Josephson diode effect in Josephson junctions formed from a type-II Dirac semimetal, NiTe2. A distinguishing feature is that the asymmetry in the critical current depends sensitively on the magnitude and direction of an applied magnetic field and achieves its maximum value when the magnetic field is perpendicular to the current and is of the order of just 10 mT. Moreover, the asymmetry changes sign several times with an increasing field. These characteristic features are accounted for by a model based on finite-momentum Cooper pairing that largely originates from the Zeeman shift of spin-helical topological surface states. The finite pairing momentum is further established, and its value determined, from the evolution of the interference pattern under an in-plane magnetic field. The observed giant magnitude of the asymmetry in critical current and the clear exposition of its underlying mechanism paves the way to build novel superconducting computing devices using the Josephson diode effect.
Funder
Deutsche Forschungsgemeinschaft
Simons Foundation
David and Lucile Packard Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
126 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献