Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference39 articles.
1. George, D. & Huerta, E. Deep learning for real-time gravitational wave detection and parameter estimation: results with advanced LIGO data. Phys. Lett. B 778, 64–70 (2018).
2. Gabbard, H., Williams, M., Hayes, F. & Messenger, C. Matching matched filtering with deep networks for gravitational-wave astronomy. Phys. Rev. Lett. 120, 141103 (2018).
3. Gebhard, T., Kilbertus, N., Parascandolo, G., Harry, I. & Schölkopf, B. ConvWave: searching for gravitational waves with fully convolutional neural nets. In Workshop on Deep Learning for Physical Sciences (DLPS) at the 31st Conference on Neural Information Processing Systems (NIPS) (eds Angus, R. et al.) 13 (Curran, 2017).
4. Searle, A. C., Sutton, P. J. & Tinto, M. Bayesian detection of unmodeled bursts of gravitational waves. Class. Quantum Gravity 26, 155017 (2009).
5. Skilling, J. Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833–859 (2006).
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献