Abstract
AbstractThe interplay of quantum statistics and interactions in atomic Bose–Fermi mixtures leads to a phase diagram markedly different from pure fermionic or bosonic systems. However, investigating this phase diagram remains challenging when bosons condense due to the resulting fast interspecies loss. Here we report observations consistent with a phase transition from a polaronic to a molecular phase in a density-matched degenerate Bose–Fermi mixture. The condensate fraction, representing the order parameter of the transition, is depleted by interactions, and the build-up of strong correlations results in the emergence of a molecular Fermi gas. The features of the underlying quantum phase transition represent a new phenomenon complementary to the paradigmatic Bose–Einstein condensate/Bardeen–Cooper–Schrieffer crossover observed in Fermi systems. By driving the system through the transition, we produce a sample of sodium–potassium molecules exhibiting a large molecule-frame dipole moment in the quantum-degenerate regime.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献