Thermodynamics of free and bound magnons in graphene

Author:

Pierce Andrew T.,Xie YonglongORCID,Lee Seung Hwan,Forrester Patrick R.ORCID,Wei Di S.,Watanabe KenjiORCID,Taniguchi TakashiORCID,Halperin Bertrand I.ORCID,Yacoby AmirORCID

Abstract

AbstractSymmetry-broken electronic phases support neutral collective excitations. For example, monolayer graphene in the quantum Hall regime hosts a nearly ideal ferromagnetic phase at specific filling factors that spontaneously breaks the spin-rotation symmetry1–3. This ferromagnet has been shown to support spin-wave excitations known as magnons that can be electrically generated and detected4,5. Although long-distance magnon propagation has been demonstrated via transport measurements, important thermodynamic properties of such magnon populations—including the magnon chemical potential and density—have not been measured. Here we present local measurements of electron compressibility under the influence of magnons, which reveal a reduction in the gap associated with the ν = 1 quantum Hall state by up to 20%. Combining these measurements with the estimates of temperature, our analysis reveals that the injected magnons bind to electrons and holes to form skyrmions, and it enables the extraction of free magnon density, magnon chemical potential and average skyrmion spin. Our methods provide a means of probing the thermodynamic properties of charge-neutral excitations that are applicable to other symmetry-broken electronic phases.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3