Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia

Author:

de Beauchamp Lucie,Himonas EkateriniORCID,Helgason G. VignirORCID

Abstract

AbstractWhile the understanding of the genomic aberrations that underpin chronic and acute myeloid leukaemia (CML and AML) has allowed the development of therapies for these diseases, limitations remain. These become apparent when looking at the frequency of treatment resistance leading to disease relapse in leukaemia patients. Key questions regarding the fundamental biology of the leukaemic cells, such as their metabolic dependencies, are still unresolved. Even though a majority of leukaemic cells are killed during initial treatment, persistent leukaemic stem cells (LSCs) and therapy-resistant cells are still not eradicated with current treatments, due to various mechanisms that may contribute to therapy resistance, including cellular metabolic adaptations. In fact, recent studies have shown that LSCs and treatment-resistant cells are dependent on mitochondrial metabolism, hence rendering them sensitive to inhibition of mitochondrial oxidative phosphorylation (OXPHOS). As a result, rewired energy metabolism in leukaemic cells is now considered an attractive therapeutic target and the significance of this process is increasingly being recognised in various haematological malignancies. Therefore, identifying and targeting aberrant metabolism in drug-resistant leukaemic cells is an imperative and a relevant strategy for the development of new therapeutic options in leukaemia. In this review, we present a detailed overview of the most recent studies that present experimental evidence on how leukaemic cells can metabolically rewire, more specifically the importance of OXPHOS in LSCs and treatment-resistant cells, and the current drugs available to target this process. We highlight that uncovering specific energy metabolism dependencies will guide the identification of new and more targeted therapeutic strategies for myeloid leukaemia.

Funder

Cancer Research UK

RCUK | Medical Research Council

University of Glasgow MVLS DTP Studentship The Howat Foundation

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Cancer Research,Hematology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3