Abstract
AbstractIt has been demonstrated that many promising thermoelectric materials, such as tetradymite compounds are also three-dimensional topological insulators. In both cases, a fundamental question is the evaluation of carrier relaxation time, which is usually a rough task due to the complicated scattering mechanisms. Previous works using the simple deformation potential theory or considering complete electron-phonon coupling are, however, restricted to small systems. By adopting a data-driven method named SISSO (Sure Independence Screening and Sparsifying Operator) with the training data obtained via deformation potential theory, we propose an efficient and physically interpretable descriptor to evaluate the relaxation time, using tetradymites as prototypical examples. Without any input from first-principles calculations, the descriptor contains only several elemental properties of the constituent atoms, and could be utilized to quickly and reliably predict the carrier relaxation time of a substantial number of tetradymites with arbitrary stoichiometry.
Funder
National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modelling and Simulation
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献